HINDLIMB PROPORTIONS AND LOCOMOTION OF EMUARIUS GIDJU

(PATTERSON \& RICH, 1987) (AVES: CASUARIIDAE)
WALTER E. BOLES
Bolcs, W.E. 199706 30: Hindlimb proportions and locomotion of Enutarius gidju (Patterson \& Rich, 1987) (Aves: Casuariidae). Memoirs of the Queensland Musenm 41(2): 235-240. Brisbane. ISSN 0079-8835.

Abstract

Using proximal and distal fragments, the length of the tarsometatarsus of Emuarius gidju is estimated and compared to that of other hindlimb elements. From these proportions and other hindlimb morphology, the inferred locomotory mode of E. gidju is compared with Recent casuarids. Emuarius gidju appears to have been more cursorially adapted than Casuarius and dwarf Dromaius, suggesting at least some open habitat in the Riversleigh palaeoenvironment. Using the relationship between weight and least circumference of the femur and tibiotarsus in Recent birds, the weight of E. gidju is suggested to have been $19-21 \mathrm{~kg}$. Emuarius, Ales, hindlimb, locomotion.

Walter E. Boles, Australian Museum, 6 College Sureet, Sydney NSW 2000, Australia; received $\$$ November 1996.

Emus, Dromains (Dromaiinac), form a prominent element of Australia's avifauna. The closely related cassowaries, Casuarius (Casuariinae), are more restricted in distribution. These two groups occupy very different modern habitats, and locomotory adaptations correlated with these different habitats are obvious in the relative proportions of the lower limb bones. Because of the relationship between habitat and limb proportions, fossil emus and cassowaries are potentially good palaeoenvironmental indicators. Emus have a better fossil record (Patterson \& Rich, 1987), than cassowarics (Vickers-Rich, 1991). Patterson \& Rich (1987) described lower limb elements from the Miocene of central Australian as a small cmu, Dronains gidju. Boles (1991) erected Emuarius for this species and considered it closer to cmus than cassowaries, but nearer their dichotomy than any other described taxon.

The type material of Emuarius gidju is part of the Kutjamarpu Local Fauna, recovered from the Leaf Locality (UCMP V-6213) on the E shore of Liake Ngapakaldi in the E Lake Eyre Sub-Basin, South Australia. Much E. gidju material occurs at Riversleigh NW Qucensland. Archer et al. (1989, 1994) considered the Riversleigh palacohabitat as rainforest, based on mammal remains.

This paper is to l) estimate the lower limb proportions of E. gidju; 2) compare these to modern cmus and cassowaries and, by implication, to their style of locomotion; 3) make an initial estimate of the weight of E. gidju; and 4) interpret the possible palaeohabitat at Riversleigh where E. gidjn occurs.

MATERIALS AND METHODS

Osteological terminology follows Baumel \& Witmer (1993). Measurements were made with vernier calipers accurate to 0.05 mm and rounded to the nearest 0.1 mm . Institutional acronyms are AM (Australian Museum), QM (Quecnsland Museum) and SAM (South Australian Museum).

The type specimen of E. gidju (SAMP26779) is an associated distal tibiotarsal fragment, proximal tarsometatarsus including much most of the shaft, and complete set of pedal phalanges (Patterson \& Rich, 1987) and numerous specimens of Enunarius are known from Riversleigh (Table 1).

To compare changes in relative proportions of the casuariid hindlimb, the following measures were calculated for the bone lengths of the 3 cxtant species of Casuarius and the 1 living and 2 recently extinct dwarf species of Dromains:

$$
\begin{aligned}
& \mathrm{TBT} / \mathrm{FMR}=\frac{\text { Tibiotarsus } \times 100}{\text { Femur }} \\
& \mathrm{TMT} / \mathrm{FMR}=\frac{\text { Tarsometatarsus } \times 100}{\text { Fenur }} \\
& \mathrm{TBT} / \mathrm{TMT}=\frac{\text { Tibiotarsus } \times 100}{\text { Tarsometatarsus }} .
\end{aligned}
$$

Because the purpose was to find general, rather than detailed, directions of change, measurements were taken from the literature (Table 2) and rounded to the nearest mm . Means were used where available. The sample sizes were often small, sometimes comprising single individuals.

Predicted body weight of Emuarins gidjn was calculated (Campbell \& Marcus, 1991) from AM F78585 (ncar complete femur) and QMFI6827
(distal tibiotarsal fragment). Tape was wrapped around the bones at their least circumferences, marked at the point of overlap, straightened and measured with calipers. These results were used in the equation $\log _{10}($ weight $)=a \cdot \log 10$ (circumference) +b . where the values of a (slope) and b (interecept) were those determined by Campbell \& Mareus (1991) for all birds for the respective elements (femur: $a=0.411, b=-0.065$: tibiotarsus: $a=2.424, b=0.076)$.

RESULTS

Increased cursoriality in these birds is associated with an increase in the lengths of the tibiotarsus and tarsometatarsus relative to that of the lemur (Howell, 1944), Relative proportions of the hindlimb contributions of the long bones in Casuarius, Dromaius and Emuarius (Fig. 2) show that that of the tibiotarsus remains more or less consistent in all taxa; that of the femur decreases with increased cursoriality, whereas that of the tarsometatarsus increases. The relationship between these changes is consistent for Recent species: $\mathrm{TBT} / \mathrm{FMR}=0.45[\mathrm{TMT} / \mathrm{FMR}]+113$; $\mathrm{r}=0.84$.
These changes appear independent of overall size when compared between genera, but within genera the smaller members have the greater TBT/TMT and smaller TMT/FMR. The TBT/FMR in Casuarius remains constant. It suggests from these figures that the smaller species in each genus are the least cursorial members.
The Kutjamarpu femur (AMF78585; Boles, 1991) ol' E. gidju is 194 mm long, which, because of abrasion, is a few mm less than its original length, of about 198 mm and very likely not 200 mm . Complete tibiotarsi are unknown for E. gidju (Table 1). Nevertheless, it is possible to predict the size and relative proportions of this bone from other hind limb elements. Tarsometatarsi are represented by the holotypical proximal end and shaft, and several distal fragments. An estimate of the tarsometatarsal length was made by using the proximal end and shaft and a distal fragment. The proximal tarsometatarsal fragment is 276 mm long; the longest edge of its shaft is straight and shows no evidence of flaring outward to trochlea metatarsi II. The distal piece is 64 mm long; the small portion of shaft remaining is just proximal to the flaring of trochlea metatarsi II. Because there is little, if any, overlap between these two pieces, minimum length ol the tarsometatarsus is 340 mm (Fig. 3).

TABLE 1. Specimens that have been referred to Emuarius gidju. *=specimens described by Boles (1991).

SITE	REG. NO.	ELEMENT
Lake Ngapakaldi	$\begin{gathered} \text { SAM } \\ \text { P26779 } \end{gathered}$	Holotype: associated distal tibiotarsus. proximal tarsometarsus, complete pes
	AMF78585*	Femur
Riversleigh		
System A or B White Hunter	QMF16827*	Tibiotarsus
System B Camel Sputum	QMF29720	Vertebrae
	QMF29721	Vertebrae
	QMF16828*	Femur
	QMFI6829*	Femur
	AMF78586*	Tibiotarsus
	QMF29722	Tibiotarsus
	QMF29723	Tarsometatarsus
	QMF29724	Tarsometatarsus
	QMF29725	Tarsometatarsus
	QMF29726	Tarsometatarsus.
	QMF29727	Tarsometatarsus
Upper	QMF16830**	Rostrum
	QMF16831*	Scapulocoracoid
	QMF29728	Vertebrae
$\begin{aligned} & \text { System ?B, Dirks } \\ & \text { Towers } \end{aligned}$	QMF29729	Tarsometatarsus
$\begin{aligned} & \text { System C } \\ & \text { Gag } \end{aligned}$	QMF168.32*	Femur
	AMF78587*	Tarsometatarsus

Using a tarsometatarsal length of 340 mm and a lemoral length of 198 mm , gives a TMT/FMR of 172. greater than that of any Recent casuariid except Dromains novaehollandiae. Using these values with the regression equation for the family (Fig. 4) gives a predicted TBT/FMR of 190, which corresponds to a tibiotarsal length of 376 mm . These 3 values give a combined length of 916 mm , virtually the same as the hindlimb of Casuarius casuarius, although the proportional contribution of each bone to this length is dilferent (Fig. 2).
This figure must be used with caution. The fragments on which it is based represent different individuals from different localities. As such, there are several sources ol potentially significant variation between components. Gcographical variation may not have bcen of major importance; living D. novachollandiae exhibits little dillerentiation across its range. There is much greater size variation across this species' chronological

FIG. I. Leaf Locality femur of Emuarius gidju compared with femora of Recent casuariids, in cranial view. From left, Casuarius Casuarius, C. bennemii, Emuarins gidjn, Dromains novachollandiae and D. ater.
than any known species of emu (illustrated in Patterson \& Rich, 1987). In cmus, phalanx ungualis of digit III is longer than that of digit II, whereas in cassowaries it is reversed, with phalanx ungualis of digit II extended into a long spike several times the length of phalanx ungualis of digit III. Emuarius does not have phalanx ungualis of digit II developed into a spike, but it is still longer than that of digit III.

Cassowaries have digits II and IV relatively long compared with digit III (ratios of II:III and IV:III, respectively. without phalanges unguales $0.82,0.76$). Both are substantially reduced in relative length in emus (ratios as above - 0.55 . 0.63). Both digits II and IV of Emuarius are comparatively
range, with mainland fossils usually smaller than modern birds. Patterson \& Rich (1987) suggested that it smay have been at any one time in the Pleistocene both larger or smaller than at present'. Considerable intraspecific variation in living D. nowaehollandiae is probably related to age and sex, as well as individual differences (Marchant \& Higgins, 1990). For example. among 22 modern specimens, Patterson \& Rich (1987) found a range in tarsometatarsal length of $332-422 \mathrm{~mm}$ (mean 383 mm : s.d. 18.0).

Miller (1963) described I)romains ocypus from the middle to late Pliocenc Palankarinna Local Fauna from Lake Palankarinna, northern South Australia. This species was intermediate in size between Ennuarins gidjn and living Dromains novaehollandice. The tarsonctatarsus of D. ocypus is markedly shorter relative to its width than is that ol D. noraehollandiae. but less so than in Casnarius. Vickers-Rich (1991) interpreted this as suggesting a less cursorial lifestyle for D. ocypus than for D. novaehollandiae. Because Patterson \& Rich (1987) did not give comparative ligures lor relative widths, it is difficult to quantitatively compare E. gidjn with these species. Visually, Emmarius appears to be proportionally thinner lor its length than is D. ocypus, but not to the degree oll D. noraehollandiae.

Patterson \& Rich (1987) pointed out that, although, the foot of E. gidjli is more like that of cmus than cassowaries. it is more cassowary-like
longer than those in emus (digit IV to a lesser degrec), but not to the extent seen in cassowaries ($0.57,0.68$). Patterson \& Rich (1987) suggested that the reduction of digit IV and particularly of digit II in E, gidju, compared with the highly cursorial D. noraehollandiae, appears to parallel similar reductions in other groups of terrestrial birds and mammals.

In comparison with the pedal phalanges of cassowaries, those of emus are dorsoplantarly compressed. Emuarins is somewhat intermediate. with its phalanges substantially more dorsoplantarly compressed than those of cassowaries, but less compressed than (but more similar to) the condition in emus.

Campbell \& Marcus (1991) stated the least shaft circumference of cither [femur or tibiotarsus] can be a reliable indicator of the weight ol a fossil bird'. From their cquation, and measurements of E. gidju bones, predicted weights ol this species were 21 kg based on the Temur and 19 kg based on the tibiotarsus. The least circumference of the tibiotarsus is almost always at or distal to the midpoint of the bone; in most birds it is in the distal third (Campbell \& Mareus 1991). No tibiotarsal specimen ol E. gidju is complete, although the length ol that measured is about a third of the predicted length for this bone. It is possible that the least circumlerence occurs on the missing section of tibotarsus, and the value given here would have to be adjusted. The predicted

TABLE 2. Measurements (mm) and measures of relative proportions of hindlimb bones of Recent emus and cassowaries and of Emuarius gidju. For calculation of predicted measurements of E. gidju and of measurcs of relative proportions, see text.

Species	FMR	TBT	TMT	Source	TBT/ TMT FMR /FMR	TBT/	
TMT							
Dromaius novaehollandiae	203	401	383	 Rich, 1987	198	189	105
Dromaius baudinianus	164	293	234	 Sutton, 1928	179	143	125
Dromaius ater	178	331	274	 Sutton, 1928	18	154	121
Casuarius umappendiculaus	236	388	306	Rich et al., 1988	164	130	127
Casuaruss casuarius	232	384	300	Rich et al., 1988	166	129	128
Casuarus benneui	221	365	229	Rich et al., 1988	165	104	159
Emuarius gidju	198	376	340	This paper	190	172	111

watercourses. It was not until at least the middle Miocene (c. 15 mya) that drying of the elimate began and open habitats started to appear on a large scale. There is no evidence of grasslands before the end of the late Miocene to Pliocene (Martin, this volume).

The graviportal locomotion of Casuarius is associated with movement through the dense vegetation of the Aus-tralo-Papuan rainforests. Inereased cursoriality seems correlated with the appearance of more open habitat, in which sustained running could take place. (While able to run if required, cassowaries have
weights from the two bones are close enough to give an acceptable first estimate for E. gidju.

DISCUSSION

Throughout the early Tertiary, much of Australia was covered in closed forest, and the climate was considerably more humid than at present (Frakes et al., 1987). The dominant vegctation type over much of the continent was rainforest. Nothofagus-dominated rainforest covered the Lachlan River valley during the late Eocene to late Oligocene-early Miocene (Martin. 1987). Even where closed forests were not present, gallery rainforest probably occurred along
limited opportunities in such habitat to work up and sustain a reasonable degree of speed because sufficiently open areas are restricted.) Morphologieal correlates with cursoriality inelude proportional lengthening of the tibiotarsus and tarsometatarsus, and a reduction in the relative size of digit II. Conditions between the extremes of the states found in Casuarius and Dromaius are suggestive of levels of cursorial ability intermediate between theirs, although at what point along the seale cannot be determined. This, in turn, suggests the possibility that the amount of open habitat might be also somewhere between that available to cassowaries and emus.

FIG. 2. Comparative proportions of bones in the hindlimbs of Emuarius gidju, two species of Casuarius and two species of Dromaius. Note that while the tibiotarsal proportion remains relatively constant, the proportion comprising the femur decreases as that of the tarsometatarsus increases.

FlG. 3. 'Combined' length of Leaf Locality proximal tarsometatarsus and Riversleigh distal tarsometatarsus compared with tarsometatarsi of Recent casuariids, in cranial view. From left, Dromains novaehollandiae, D. ater, Emuarius gidjn, Casuarius casuarius and C. bennemii.

Casuarius has been considered more primitive than Dromaius on the basis of distribution, habitat preferences and hindlimb. Schodde \& Calaby (1972) and Schodde (1982) cited the cassowaries as elements of the Tumbunan avifauna, which represents the earliest lineages of extant Aus-tralo-Papuan birds. The emus were placed by Schodde (1982) in the autochthonous Eyrean launa, which evolved in response to the opening of the Australian habitat. Boles (1991) considered Emuarius to be closer to the dichotomy of cassowaries and emus than any other known taxon, but too cursorially adapted and Dromainslike to have been the common ancestor. It appears to mark in the Casuariidae a stage in the transition from a graviportal to a more cursorial locomotion. Although some characters of the hindlimb of E. gidju are more similar to cither Casuarius or Dromaius, many are intermediate between living members of these genera (Boles, 1991). Boles (1991) drew attention to the fact that the lower limb bones were more similar to those of Dromains, whereas the femur, whose proportions are more dependent on the bird's mass than its
locomotion (Prange et al., 1979), more closely resembled Casuarius.
There are alternative explanations that accommodate both the cursorial hindlimb proportions of E. gidju and the absence of open spaces. One possibility is that the ground cover of the rain forests was sufliciently open for cursorial animals to move rapidly without obstruction. For example, modern Nothofagus forests are Irequently open below the canopy, without the dense understory of some other rain forest types (pers. obs.).
Neville Pledge (pers. comm.) suggested that a situation may have existed similar to that which occurred on Kangaroo Island when the dwarf emu Dromaius baudinianus was extant. Much of the island's vegetation was very thick and would have prevented rapid passage of a large animal such as the emu. Large mammals, however, forced runways through the vegetation, permitting them to move with comparable, albeit restricted, ease. The emus apparently took advantage of these runways for their own progress. Likewise, the large mammals known from Riversleigh may have opened similar pathways through the thick undergrowth, which could have been used by E. gidju. Nonetheless, D. baudiniams was also noted for being very fast and virtually uncapturable in open areas.
A small Miocene dromaiid from Alcoota, NT, is known from 2 phalanges and 3 unassociated trochleae (Patterson \& Rich, 1987). These are of comparable size with E. gidju. There are slight differences in phalangeal morphology, and Patterson \& Rich (1987) retained these specimens as Dromaius sp. indet. until more complete material is available. The Alcoota palacohabitat has been interpreted as a lake, bordered by sedge or grassland, grading to woodland and gully forest (Murray \& Megirian. 1992). This is a different environment than that interpreted for the older Riversleigh deposits. Even if the Alcoota dromaiid proves to be E. gidjn, it would have limited relevance to reconstructing the Riversleigh habitats because of the age differences of the deposits. It would, however, suggest that E. gidju was preadapted for the more open Alcoota environment.
Models of this species' locomotory mode depend on extrapolations from living, non-congeneric relatives. These are speculative, and must be treated as such, while palaeoenvironmental reconstructions based on them require an even greater degree of caution.

FIG. 7. Relationslip of TMT/FMR and TBT/FMR of Recent specics of Catmarius (opern circles) and Dromains (clased circles). Species numbered as tullows: 1. Canmarmes bemefth: 2. C. casmarins: 3. C. timpperadiculatus; 4, D. baddinianus; 5, D. ater: 6, D. novalollamdiae. Regression line is TBT/AMK $=$ $0.45[T M T / F M R]+11.3: r=0.84$. The fine vertical lime represents the intersection "ith thas line of the TMT/FAR (172) for Emmarius sidju as calleulated in the eext. Predeted TBT/FMR is 190.

ACKNOWI.EDGEMENTS

In addition to achnowledgumens in Boles (1991) I thank Neville Pledge for disctission on the Kangaroo Island habitat, Lynne Ho and Maurice Ortega for ligures, and Anna Gillespic for information on E. gidju. The Riversleigh material was eollected via an ARC Irugramme Cirant 10 M . Archer; a grant from the Department of Arts. Sport, the Environment. Tourism and Territories to M. Archer, S. Hand and H. Godthelp: suppost from the University of New South Wales: a grant from the National Estate Programme Grants Scheme to M. Archer and A. Bartholomai; and gronts in aid to the Riversleigh Rescarcla Project from Wang Australia Pry Lid, ICI AusIralia and the Australian Geographic Sociely.

REFERENCES

ARCHER, M. HAND. S.J. \& GODTHELF, H. 194. Riversleigh, Inded (Reed: Sydney).
ARCHER. M., HAND. S.. CODTHELLP. H. \& D MEGIRIAN g G89. Fossil mammals al Riveralcigh, wortheatern Quemsland: prelimsnary overview ol bowlraligraphy, correlation and envinnmental change. Atistraliut Zoologest 25. 29-65.
BAUMEL. J.J. \& L.MI. WITMER. 3093. Osteologia. Puhlications of the Nunta! Omithological Cluh 23: 45-132

BOLES, W.E. 1991. Revision of Dromenins gidju Patterson 发 Rich, 1987, with a reassessment of its generic position. Natural History Muscum of Los Angeles County Science Series 36: 195-208.
CAMPBELL. K.E., JR. \& MARCLSS, L. 1991. The relationship of hindlimb bone dimensions to body weight in birds. Natural Ilistory Musemm of Los Angeles County Science Series 36: 395-412
IRAKES, L.A., MLGOWRAN. B. \& BOWLER, J.M 1987. Evolutoon of Australias environments. Pp. 1-16. In Dyne, G.R. \& Wallon, D.W. (eds), Fituna ol' Australia vol. IA. General articles. (Austradian Govermment Publishing Service: Canberral).
HOWELL. A.B. 1944. Speed in animals. Their specialization for running and leaping. (University of (Chitago Press: Chicigo).
MARCILANT. S. \& HIGGINS, P.J (cuondinators). 1990. Handhook ol Austratian, New Zealand and Antarchic birds, 1. (Oxford University Press: Sydney).
MARTIN, H.A. 1987. Canozot history ol the veget tion and climate ol the Lachlan River Reghon, New South Wales. Proceedings of the Linnean. Suciety of New Soull Wales 19: 213-257.
MILLER, A.H. 1903. Fossil ratte hirds of the late Tertary of South Austrulit. Records of the South Australhin Muscum 14:413-20.
MORGAN. A. NI. \& SUTTON.J. 192S. A critical descriplion ol some recenty discovcred thenes of the catinct Kangarod Island Ema (Drommins dicmentums). Emu 28: 1.19
MURRAY, P. \& MEGIRIAN, D. Iyyz. Continuily and contrast in midulle and late Mincene vertotrate communitics trom the Nonlan Territury. The Beagle 9: 915.218.
PatTERSON, C, \& PV. RICH. 1987. The lossil hisbry ur the emus. Dromathes (Aves: Dromaniter). Reconls of the South Australian Museum 21: 85-117.
FRANGE.HD., ANDERSON,J.F. \&RA11N, 11. 1979. Scalingol sheletal mass to body mash in hinds and mammals. American Naturatisi 113: 103-122.
SCIIODDE, R 1982, Origin, adaptation and evolution of hirds in arid Australia. Pp. 191-224 11 Barther. W.R. \& Grecnslade, P.I.M. (eds), Evolution of the Mora and fama of arid Austraha. (Peacoch Publicutions: Frew ville).
SCHODDE, R. © CALABY, J.11, 1472. The biogeography of the Australo-Papuan hird and manmal faunus in relatime to Torres Strint. Pp. 257-3(t). In Walker, D. (ed.). Bridge and hartier: the namral and cultural heritage of Torres Strait, (Australlian Nallomal ('nwersily Prens: Canheral)
VICKERS-RICH, P. 1891. The Mescrore and Tertitry bistory of birds on the Anstralian plate Pp. 721SOB'. In Vickers-Rich, P.V., Menaghan. I.M. Buird, R,F. \& Rich, TH. (sds), Vertchrate paldentolngy of Auknalasia. (Piuncer Design Stutro: Nelboume .

